Gliadin Peptides Induce Tissue Transglutaminase Activation and ER-Stress through Ca2+ Mobilization in Caco-2 Cells
نویسندگان
چکیده
BACKGROUND Celiac disease (CD) is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG) seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+) homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS We studied Ca(2+) homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+) from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+) from the endoplasmic reticulum (ER) and mitochondria, whereas peptide 57-68 mobilized Ca(2+) only from mitochondria. We also found that gliadin peptide-induced Ca(2+) mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS By inducing Ca(2+) mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.
منابع مشابه
Celiac Anti-Type 2 Transglutaminase Antibodies Induce Phosphoproteome Modification in Intestinal Epithelial Caco-2 Cells
BACKGROUND Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2) activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute t...
متن کاملSimultaneous Detection of IgA/IgG AntiTissue Transglutaminase/Deamidated Gliadin Peptides in Serodiagnosis of Celiac Disease
Background: Celiac disease is a common autoimmune disorder that is diagnosed based on clinical case identification, serological screening, and duodenal histology. However, the existence of mild clinical forms, such as seronegative cases with patchy atrophy and potential celiac disease, can make it difficult to determine a definitive diagnosis. The seronegative patients with celiac disease can i...
متن کاملEndocytosis and transcytosis of gliadin peptides.
BACKGROUND Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Some gliadin peptides are not digested by intestinal proteases and can have different biological effects. Gliadin peptides can induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadi...
متن کاملModulatory Effect of Gliadin Peptide 10-mer on Epithelial Intestinal CACO-2 Cell Inflammatory Response
Celiac Disease (CD) is a chronic inflammatory enteropathy, triggered in genetically susceptible individuals by dietary gluten. Gluten is able to elicit proliferation of specific T cells and secretion of inflammatory cytokines in the small intestine. In this study we investigated the possibility that p10-mer, a decapeptide from durum wheat (QQPQDAVQPF), which was previously shown to prevent the ...
متن کاملAbrogation of Immunogenic Properties of Gliadin Peptides through Transamidation by Microbial Transglutaminase Is Acyl-Acceptor Dependent
Wheat gluten confers superior baking quality to wheat based products but elicits a pro-inflammatory immune response in patients with celiac disease. Transamidation of gluten by microbial transglutaminase (mTG) and tissue transglutaminase (tTG) reduces the immunogenicity of gluten; however, little information is available on the minimal modification sufficient to eliminate gliadin immunogenicity...
متن کامل